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ABSTRACT
We introduce Isolation Distributional Kernel as a new way to mea-

sure the similarity between two distributions. Existing approaches

based on kernel mean embedding, which converts a point kernel

to a distributional kernel, have two key issues: the point kernel

employed has a feature map with intractable dimensionality; and

it is data independent. This paper shows that Isolation Distribu-

tional Kernel (IDK), which is based on a data dependent point ker-
nel, addresses both key issues. We demonstrate IDK’s efficacy and

efficiency as a new tool for kernel based anomaly detection. With-

out explicit learning, using IDK alone outperforms existing kernel

based anomaly detector OCSVM and other kernel mean embedding

methods that rely on Gaussian kernel. We reveal for the first time

that an effective kernel based anomaly detector based on kernel

mean embedding must employ a characteristic kernel which is data

dependent.
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• Computing methodologies → Kernel methods;
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1 INTRODUCTION
In many real-world applications, an object can be represented more

effectively and naturally as a set of data points generated from a

distribution [4, 9, 19], e.g., a bag of points in multi-instance learning;
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an image as a collection of patches; and a galaxy cluster of individ-

ual galaxies. This treatment demands a way to measure similarity

between two distributions.

Kernel mean embedding [10, 16] on distributions is one effective

way to build a distributional kernel from a point kernel, enabling

similarity between distributions to be measured. The current ap-

proach has focused on point kernels which have a feature map with
intractable dimensionality. This feature map is a known key issue

in kernel mean embedding in the literature [10]; and it has led to

O(n2) time complexity, where n is the input data size.

Here, we identify that being data independent point kernel is
another key issue which compromises the effectiveness of the simi-

larity measurement that impacts on task-specific performance.

These two issues are exemplified in anomaly detection: An exist-

ing kernel mean embedding method took more than 9000 seconds

and produced a detection accuracy of 0.85 on a dataset having

more than half a million data points. In contrast, the proposed

method took less than 60 seconds with an accuracy of 0.97. See the

experiments section for details.

We propose to employ a data dependent point kernel to address

the above two key issues directly. As it is implemented using Isola-

tion Kernel [13, 20], we called the proposed kernel mean embedding:

Isolation Distributional Kernel or IDK.

Our contributions are:

(1) Proposing a new implementation of Isolation Kernel which

has the required data dependent property for anomaly de-

tection. We provide a geometrical interpretation of the new

Isolation Kernel in Hilbert Space that explains its superior

detection accuracy over existing Isolation Kernel.

(2) Formally proving that the new Isolation Kernel (i) has the

following data dependent property: two points, as measured
by Isolation Kernel derived in a sparse region, are more similar
than the same two points, as measured by Isolation Kernel
derived in a dense region; and (ii) is a characteristic kernel,

i.e., its kernel mean map is injective in Hilbert space.

(3) Introducing Isolation Distributional Kernel (IDK). It is distin-

guished from existing distributional kernels in two aspects.

First, the use of the data dependent Isolation Kernel pro-

duces high accuracy in anomaly detection tasks. Second, the

Isolation Kernel’s exact and finite-dimensional feature map

enables IDK to have O(n) time complexity.

(4) Proposing a new kernel based anomaly detector using IDK.

(5) Demonstrating that, without explicit learning, IDK anomaly

detector not only significantly outperforms Gaussian kernel

based anomaly detectors in detecting point anomalies, but it

runs orders of magnitude faster. This is an evidence that an
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Table 1: Key symbols and notations.

K̂I Isolation Distributional Kernel (IDK)

Φ̂ Exact feature map of IDK

K̂G Gaussian Distributional Kernel (GDK)

φ̂ Approximate feature map of GDK

K̂NG Nyström accelerated GDK using φ̂

effective kernel based anomaly detector constructed from

kernel mean embedding must use a point kernel which is

both a characteristic kernel and data dependent.
(6) Revealing that the proposed anomaly detector is one of the

isolation based methods; but it is the only isolation based

method which is based on kernel.

In addition, the proposed method is the only detector that makes

use of distributional kernel for point anomaly detection.

2 BACKGROUND
In this section, we briefly describe the kernel mean embedding and

Isolation Kernel as the background of the proposed method. The

key symbols and notations used are shown in Table 1.

2.1 Kernel mean embedding and two key issues
Let S and T be two nonempty datasets where each point x in S and

T belongs to a subspace X ⊆ Rd and is drawn from probability

distributions PS and PT defined on Rd , respectively. PS and PT
are strictly positive on X and strictly zero on X = Rd \ X, i.e.,
∀X ⊆ X s.t. X , ∅;PS (X ),PT (X ) > 0, and ∀X ⊆ X s.t. X ,
∅;PS (X ),PT (X ) = 0. We denote the density of PS and PT as

PS (x) and PT (x), respectively.
Using kernel mean embedding [10, 16], the empirical estimation

of the distributional kernel K̂ on PS and PT , which is based on a

point kernel κ on points x ,y ∈ X, is given as:

K̂G (PS ,PT ) =
1

|S | |T |

∑
x ∈S

∑
y∈T

κ(x ,y). (1)

2.1.1 First issue: Feature map has intractable dimensionality. The
distributional kernel K̂G relies on a point kernel κ, e.g., Gaussian
kernel, which has a feature map with intractable dimensionality.

The use of a point kernel which has a feature map with intractable
dimensionality is regarded as a fundamental issue of kernel mean em-
bedding [10]. This can be seen from Eq 1 which has time complexity

O(n2) if each set of S and T has data size n.
It has been recognised that the time complexity can be reduced

by utilising the feature map of the point kernel [10].

If the chosen point kernel can be approximated as κ(x ,y) ≈

⟨φ(x),φ(y)⟩, where φ is a finite-dimensional feature map approxi-

mating the feature map of κ. Then, K̂ can be written as

K̂NG (PS ,PT ) ≈
1

|S | |T |

∑
x ∈S

∑
y∈T

φ(x)⊤φ(y) ≈ ⟨φ̂(PS ), φ̂(PT )⟩ (2)

where φ̂(PT ) =
1

|T |

∑
x ∈T φ(x) is the empirical estimation of the

approximate feature map of K̂G (PT , ·), or equivalently, the kernel

mean map of PT in RKHS (Reproducing Kernel Hilbert Space) H

associated with K̂G .

Note that the approximation κ(x ,y) ≈ ⟨φ(x),φ(y)⟩ is essential
in order to have a finite-dimensional feature map. This enables
the use of Eq 2 to reduce the time complexity of computing
K̂(PS ,PT ) to O(n) since φ̂(P) can be computed independently in

O(n). Otherwise, Eq 1 must be used which costs O(n2).
A successful approach of finite-dimensional feature map approxi-

mation is kernel functional approximation. Representative methods

are Nyström method [22] and Random Fourier Features [14, 24].

Existing distributional kernels such as the level-2 kernel used

in support measure machine (SMM) [9], Mean map kernel (MMK)

[19] and Efficient Match Kernel (EMK) [4] have exactly the same

form as shown in Eq 1, where κ can be any of the existing data

independent point kernels. Both MMK and EMK employ a kernel

functional approximation in order to use Eq 2.

In summary, using a point kernel which has a feature map with

intractable dimensionality, the kernel functional approximation

is an enabling step to approximate the point kernel with a finite-

dimensional feature map. Otherwise, the mapping from T to a

point φ̂(PT ) cannot be performed; and Eq 2 cannot be computed.

However, these methods of kernel functional approximation are

computationally expensive; and they almost always weaken the

final outcome in comparison with that derived from Eq 1.

2.1.2 Second issue: kernel is data independent. In addition to

the known key issue mentioned above, we identify that a data
independent point kernel is a key issue which leads to poor task-

specific performance.

The weakness of using a data independent kernel/distance is well

recognised in the literature. For example, distance metric learning

[21, 23, 25] aims to transform the input space such that points

of the same class become closer and points of different classes

are lengthened in the transformed space than those in the input

space. Distance metric learning has been shown to improve the

classification accuracy of k nearest neighbour classifiers [21, 23, 25].

A recent work has shown that data independent kernels such

as Laplacian kernel and Gaussian Kernel are the source of weaker

predictive SVM classifiers [20]. Unlike distance metric learning, it

creates a data dependent kernel directly from data, requiring neither

class information nor explicit learning. It also provides a reasonwhy

a data dependent kernel is able to improve the predictive accuracy

of SVM that uses a data independent kernel.

Herewe show that the use of data independent kernel reduces the

effectiveness of kernel mean embedding in the context of anomaly

detection. The resultant anomaly detectors which employ Gaussian

kernel, using either K̂G or K̂NG , perform poorly (see Section 6.)

This is because a data independent kernel is employed.

In a nutshell, the source of the two key issues is: the point
kernel employed has a feature map with intractable dimen-
sionality and is data independent. We address both issues from

its source by using a recently introduced Isolation Kernel [13, 20].

2.2 Isolation Kernel
Let D ⊂ X ⊆ Rd be a dataset sampled from an unknown PD ; and

Hψ (D) denote the set of all partitioningsH that are admissible from

D ⊂ D, where each point z ∈ D has the equal probability of being
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selected from D; and |D| = ψ . Each θ [z] ∈ H isolates a point z ∈ D

from the rest of the points in D. Let 1(·) be an indicator function.

Definition 2.1. [13, 20] For any two points x ,y ∈ Rd , Isolation
Kernel of x and y is defined to be the expectation taken over the

probability distribution on all partitionings H ∈ Hψ (D) that both
x and y fall into the same isolating partition θ [z] ∈ H , where

z ∈ D ⊂ D,ψ = |D|:

κI (x ,y | D) = EHψ (D)[1(x ,y ∈ θ [z] | θ [z] ∈ H )]

= ED⊂D [1(x ,y ∈ θ [z] | z ∈ D)]

= P(x ,y ∈ θ [z] | z ∈ D ⊂ D) (3)

In practice, κI is constructed using a finite number of partition-

ings Hi , i = 1, . . . , t , where each Hi is created using randomly

subsampled Di ⊂ D; and θ is a shorthand for θ [z]:

κI (x ,y | D) =
1

t

t∑
i=1
1(x ,y ∈ θ | θ ∈ Hi )

=
1

t

t∑
i=1

∑
θ ∈Hi

1(x ∈ θ )1(y ∈ θ ) (4)

Isolation Kernel is positive semi-definite as Eq 4 is a quadratic

form. Thus, Isolation Kernel defines a RKHS H .

The isolation partitioningmechanismswhich have been used pre-

viously to implement Isolation Kernel are iForest [20], and Voronoi

diagram [13] (they are applied to SVM and clustering.)

3 PROPOSED ISOLATION KERNEL
Here we introduce a new implementation of Isolation Kernel, to-

gether with its exact and finite feature map, and its data dependent

property in the following three subsections.

3.1 A new implementation of Isolation Kernel
An isolation mechanism for Isolation Kernel which has not been

employed previously is given as follows:

Each point z ∈ D is isolated from the rest of the points in

D by building a hypersphere that covers z only. The radius of the
hypersphere is determined by the distance between z and its nearest
neighbor in D \ {z}. In other words, a partitioning H consists of

ψ hyperspheres θ [z] and the (ψ + 1)-th partition. The latter is the

region in Rd which is not covered by allψ hyperspheres. Note that

2 ≤ ψ < |D |. Figure 1 (left) shows an example usingψ = 3.

This mechanism has been shown to produce large partitions in a

sparse region and small partitions in a dense region [2]. Although

it was previously used as a point anomaly detector called iNNE [2],

its use in creating a kernel is new.

3.2 Feature map of new Isolation Kernel
Given a partitioningHi , letΦi (x) be aψ -dimensional binary column

vector representing all hyperspheres θ j ∈ Hi , j = 1, . . . ,ψ ; where
x falls into either only one of the ψ hyperspheres or none. The

j-component of the vector is: Φi j (x) = 1(x ∈ θ j | θ j ∈ Hi ). Given t
partitionings, Φ(x) is the concatenation of Φ1(x), . . . ,Φt (x).

Definition 3.1. Feature map of Isolation Kernel. For point
x ∈ Rd , the feature mapping Φ : x → {0, 1}t×ψ of κI is a vector

Figure 1: An illustration of featuremapΦ of IsolationKernel
with one partitioning (t = 1) of three hyperspheres, each
centred at a point (as red dot) z ∈ D where |D| = ψ = 3 are
randomly selected from the given dataset D. When a point
x falls into an overlapping region, x is regarded to be in the
hypersphere whose centre is closer to x .

that represents the partitions in all the partitioning Hi ∈ Hψ (D),
i = 1, . . . , t ; where x falls into either only one of theψ hyperspheres

or none in each partitioning Hi .

Let 1 be a shorthand of Φi (x) such that Φi j (x) = 1 and Φik (x) =
0,∀k , j for any j ∈ [1,ψ ].

Φ has the following geometrical interpretation:

(a) Φ(x) = [1, . . . ,1]: ∥Φ(x)∥ =
√
t and κI (x ,x |D) = 1 iff

Φi (x) , 0 for all i ∈ [1, t].

(b) For point x such that ∃i ∈ [1, t],Φi (x) = 0; then ∥Φ(x)∥ <
√
t .

(c) If point x ∈ Rd falls outside of all hyperspheres in Hi for all

i ∈ [1, t], then it is mapped to the origin of the feature space

Φ(x) = [0, . . . , 0].

Let T be a set of normal points and S a set of anomalies. Let the

given dataset D = T which consists of normal points only
1
. In the

context of anomaly detection, assuming that PT is the distribution

of normal points x and the largely different PS is the distribution

of point anomalies y. The geometrical interpretation gives rise to:

(i) point anomalies y ∈ S are mapped close to the origin of RKHS

because they are different from normal points x ∈ T—they largely

satisfy condition (c) and sometimes (b); and (ii) Φ of individual

normal points x ∈ T have norm equal or close to

√
t—they largely

satisfy condition (a) and sometimes (b). In other words, normal

points are mapped to or around [1, . . . ,1]. Note that [1, . . . ,1] is

not a single point in RKHS, but points which have ∥Φ(x)∥ =
√
t

and Φi (x) = 1 for all i ∈ [1, t].
Figure 1 shows an example mapping Φ of Isolation Kernel using

ψ = 3 and t = 1, where all points falling into a particular hyper-

sphere are mapped to the same point in RKHS. Those points which

fall outside of all hyperspheres are mapped to the origin of RKHS.

The previous implementations of Isolation Kernel [13, 20] pos-

sess condition (a) only; thus, they have no capability to separate

anomalies from normal points by using the norm of Φ only.

1
This assumption is for clarity of the exposition only; and D is used to derive Isolation

Kernel. In practice, D could contain anomalies but has a minimum impact on κI . See
details later.
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Note that Definition 3.1 is an exact feature map of Isolation

Kernel. Re-express Eq 4 using Φ gives:

κI (x ,y) =
1

t
⟨Φ(x),Φ(y)⟩ (5)

In contrast, existing finite-dimensional feature map derived from

a data independent kernel is an approximate feature map, i.e.,

κ(x ,y) ≈ ⟨φ(x),φ(y)⟩ (6)

This leads to the approximation used in existing kernel mean

embedding, showed in Eq 2.

3.3 Data dependent property of new Isolation
Kernel

The new partitioning mechanism produces large hyperspheres in a

sparse region and small hyperspheres in a dense region. This yields

the following property [20]: two points in a sparse region are more
similar than two points of equal inter-point distance in a dense region.

Here we provide a theorem for the equivalent property: two
points, as measured by Isolation Kernel derived in a sparse
region, are more similar than the same two points, as mea-
sured by Isolation Kernel derived in a dense region.

Theorem 1. Given two probability distributions PD ,PD′ ∈ P
from which points in datasets D and D ′ are drawn, respectively. Let
E ⊂ X be a region such that ∀w ∈E ,PD (w) < PD′(w), i.e., D is
sparser than D ′ in E. Assume that ψ = |D| is large such that z̃ is
the nearest neighbour of z, where z, z̃ ∈ D ⊂ D in E, under a given
metric distance ℓ (the same applies to z′, z̃′ ∈ D ′ ⊂ D ′ in E.)

Isolation Kernel κI based on hyperspheres θ (z) ∈ H has the prop-
erty that κI (x ,y | D) > κI (x ,y | D ′) for any point-pair x ,y ∈ E.

Proof. Let ℓ between x and y be ℓxy . x ,y ∈ θ [z] if and only

if the nearest neighbour of both x and y is z in D, and ℓzz̃ >

max(ℓxz , ℓyz ) holds for z̃ the nearest neighbour of z inD. Moreover,

the triangular inequality ℓxz +ℓyz > ℓxy holds because ℓ is a metric

distance. Accordingly,

P(x ,y ∈ θ [z] | z ∈ D ⊂ D)

= P({ℓzz̃ > ℓxz > ℓyz } ∧ {ℓyz > ℓxy − ℓyz }) +

P({ℓzz̃ > ℓxz > ℓxy − ℓyz } ∧ {ℓxy − ℓyz > ℓyz }) +

P({ℓzz̃ > ℓyz > ℓxz } ∧ {ℓxz > ℓxy − ℓxz }) + (7)

P({ℓzz̃ > ℓyz > ℓxy − ℓxz } ∧ {ℓxy − ℓxz > ℓxz })

= 2P({ℓzz̃ > ℓxz > ℓyz } ∧ {ℓyz > ℓxy − ℓyz }) +

2P({ℓzz̃ > ℓxz > ℓxy − ℓyz } ∧ {ℓxy − ℓyz > ℓyz })

subject to the nearest neighbour z ∈ D of both x and y. The last
equality holds by the symmetry of ℓxz and ℓyz .

Given a hypersphere v(c, ℓcz ) centered at c ∈ E and having

radius ℓcz equal to the distance from c to its nearest neighbour

z ∈ D, let P(u(c, ℓcz )) be the probability density of probability

massu(c, ℓcz ) inv(c, ℓcz );u(c, ℓcz ) =
∫
v(c, ℓcz )

PD (w)dw . Note that

u(c, ℓcz ) is strictly monotonic to ℓcz if v(c, ℓcz ) ∩ X , ∅, since PD

is strictly positive in X. Then, the followings are derived.

P({ℓzz̃ > ℓxz > ℓyz } ∧ {ℓyz > ℓxy − ℓyz })

= P(ℓzz̃ > ℓxz > ℓyz > ℓxy/2)

=

∫
1

u(z, ℓxy/2)
P(u(z, ℓzz̃ ))

∫ u(x, ℓzz̃ )

u(x, ℓxy/2)
P(u(x , ℓxz )) ×∫ u(y, ℓxz )

u(y, ℓxy/2)
P(u(y, ℓyz ))du(y, ℓyz )du(x , ℓxz )du(z, ℓzz̃ ) (8)

≈

∫ u(z, ˆℓzE )

u(z, ℓxy/2)
P(u(z, ℓzz̃ ))

∫ u(x, ℓzz̃ )

u(x, ℓxy/2)
P(u(x , ℓxz )) ×∫ u(y, ℓxz )

u(y, ℓxy/2)
P(u(y, ℓyz ))du(y, ℓyzdu(x , ℓxz )du(z, ℓzz̃ ),

P({ℓzz̃ > ℓxz > ℓxy − ℓyz } ∧ {ℓxy − ℓyz > ℓyz })

= P({ℓzz̃ > ℓxz > ℓxy − ℓyz } ∧ {ℓxy/2) > ℓyz })

=

∫
1

u(z, ℓxy/2)
P(u(z, ℓzz̃ ))

∫ u(y, ℓxy/2)

0

P(u(y, ℓyz )) ×∫ u(x, ℓzz̃ )

u(x, ℓxy−ℓyz )
P(u(x , ℓxz ))du(x , ℓxz )du(y, ℓyz )du(z, ℓzz̃ ) (9)

≈

∫ u(z, ˆℓzE )

u(z, ℓxy/2)
P(u(z, ℓzz̃ ))

∫ u(y, ℓxy/2)

0

P(u(y, ℓyz )) ×∫ u(x, ℓzz̃ )

u(x, ℓxy−ℓyz )
P(u(x , ℓxz ))du(x , ℓxz )du(y, ℓyz )du(z, ℓzz̃ ),

where
ˆℓzE = supv(z, ℓzz̃ )⊆E ℓzz̃ . The approximate equality holds by

the assumption in the theorem which implies that the integral from

u(z, ˆℓzE ) to 1 for u(z, ℓzz̃ ) is negligible. The same argument applied

to P(x ,y ∈ θ [z′] | z′ ∈ D ′ ⊂ D ′) which derives the identical result.

[7] provided the expressions of P(u(c, ℓcz )) and P(u(z, ℓzz̃ )) as

P(u(c, ℓcz )) = ψ (1 − u(c, ℓcz ))
ψ−1,

P(u(z, ℓzz̃ )) = (ψ − 1)(1 − u(z, ℓzz̃ ))
ψ−2.

With these expressions and the definition ofu(c, ℓcz ), bothP(u(c, ℓcz ))
and P(u(z, ℓzz̃ )) are lower if PD (z) becomes higher. Accordingly,

P(x ,y ∈ θ [z] | z ∈ D ⊂ D) > P(x ,y ∈ θ [z′] | z′ ∈ D ′ ⊂ D ′)

holds by the fact ∀w ∈E ,PD (w) < PD′(w), Eq. 7, Eq. 8 and Eq. 9.

This result and Definition 2.1 prove the theorem. □

Theorem 1 is further evidence that the data dependent property

of Isolation Kernel only requires that the isolation mechanism pro-

duces large partitions in sparse region and small partitions in dense

region, regardless of the actual space partitioning mechanism. We

use hyperspheres to partition the space here; where the previous

works use Voronoi diagram [13] and axis-parallel partitions in a

tree structure [20].

4 ISOLATION DISTRIBUTIONAL KERNEL
4.1 Definition of IDK
Given the feature map Φ (defined in Definition 3.1) and Eq 5, the

empirical estimation of kernel mean embedding can be expressed

based on the feature map of Isolation Kernel κI (x ,y).
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Definition 4.1. Isolation Distributional Kernel of two distribu-

tions PS and PT is given as:

K̂I (PS ,PT ) =
1

t |S | |T |

∑
x ∈S

∑
y∈T

Φ(x)⊤Φ(y)

=
1

t

〈
Φ̂(PS ), Φ̂(PT )

〉
(10)

where Φ̂(PS ) =
1

|S |
∑
x ∈S Φ(x) is the empirical feature map of the

kernel mean embedding.

Condition (a) wrt ∥Φ(x)∥ in Section 3.2 leads to ∥Φ̂(x)∥ =
√
t ;

and similarly 0 ≤ ∥Φ̂(x)∥ <
√
t holds under conditions (b) and (c) in

Section 3.2. Thus,

〈
Φ̂(PS ), Φ̂(PT )

〉
∈ [0, t] i.e., K̂I (PS ,PT ) ∈ [0, 1].

We call this particular implementation of kernel mean embed-

ding, Isolation Distributional Kernel or IDK.

The key advantages of IDK over existing kernel mean embedding

[4, 9, 19] are: (i) Φ is an exact and finite-dimensional feature map of

a data dependent point kernel; whereas φ in Eq 2 is an approximate

feature map of a data independent point kernel. (ii) The distribu-

tional characterisation of Φ̂(PT ) is derived from Φ’s adaptability to

local density in T ; whereas the distributional characterisation of

φ̂(PT ) lacks such adaptability because φ of Gaussian kernel is data

independent. This is despite the fact that both Isolation Kernel and

Gaussian kernel are a characteristic kernel (see the next section.)

4.2 Theoretical Analysis: Is Isolation Kernel a
characteristic kernel?

As defined in subsection 2.1, we consider PS ,PT ∈ P, where P

is a set of probability distributions on Rd which are admissible

but strictly positive on X and strictly zero on X. This implies that

no data points exist outside of X. Thus we limit our analysis to

the property of the kernel on X. A positive definite kernel κ is a

characteristic kernel if its kernel mean map Φ̂ : P→ H is injective,

i.e., ∥Φ̂(PS ) − Φ̂(PT )∥H = 0 if and only if PS = PT [10]. If the

kernel κ is non-characteristic, two different distributions PS , PT
may be mapped to the same Φ̂(PS ) = Φ̂(PT ).

Isolation Kernel derived from the partitioning Hi can be inter-

preted that X is packed by hyperspheres having random sizes. This

is called random-close packing [3]. Previous studies revealed that

the upper bound of the rate of the packed space in a 3-dimensional

space is almost 64% for any random-close packing [3, 17]. The pack-

ing rates for the higher dimensions are known to be far less than

100% for any distribution of sizes of hyperspheres. This implies that

the (ψ + 1)-th partition, which is not covered by any hyperspheres,

always has nonzero volume, even whenψ is very large.

Let R ⊂ X and R = X \ R be regions such that ∀x ∈ R, PS (x) ,

PT (x) and ∀x ∈ R, PS (x) = PT (x).
From the fact that

∫
R (PS (x) − PT (x))dx = 0 and

∫
X
PS (x)dx =∫

X
PT (x)dx = 1, ∫

R
(PS (x) − PT (x))dx = 0 (11)

is deduced. In conjunction with this relation and the fact ∀x ∈ R,
PS (x) , PT (x), there exists at least one R

′ ⊂ R such that∫
R′
(PS (x) − PT (x))dx , 0. (12)

This requires R to contain at least two distinct points in X.

Accordingly, a partitioning Hi of Isolation Kernel satisfies one

of the following two mutually exclusive cases:

Case 1: ∃θ ∈ Hi ,θ ⊇ R. From Eq 11, the probability of x ∼ PS
falling into θ and that of x ∼ PT falling into θ are identical.

Thus, the difference between PS and PT does not produce

any difference between Φ(x ∼ PS ) and Φ(x ∼ PT ) in expec-

tation.

Case 2: ∃θ ∈ Hi ,θ ∩ R , ∅ and θ ⊉ R. If θ ∩ R is one of R′

satisfying Eq 12, thenΦ(x ∼ PS ) andΦ(x ∼ PT ) are different

in expectation.

These observations give rise to the following theorem:

Theorem 2. The kernel mean map of the new Isolation Kernel
(generated fromD) Φ̂ : P→ H is characteristic inX with probability
1 in the limit of t → ∞, forψ , t ≪ |D |.

Proof. To define H , points in D ⊂ D are drawn from PD (x)
which is strictly positive on X, i.e., ∀X ⊆ X s.t. X , ∅,PD (X ) >

0. This implies that any partitioning H of X, created by D, has

non-zero probability, since the points in D can be anywhere in

X with non-zero probability. Also recall that ψ = |D| = 2 is the

minimum sample size required to construct the hyperspheres in H
(see Section 3.1.) Let’s call this: the property of H .

Due to the property ofH andψ ≥ 2, there existsHi ∈ {H1, . . . ,Ht }

and θ j ∈ Hi with probability 1 such that x ∈ θ j and y < θ j for any
mutually distinct points x and y in X, as t → ∞. This implies that,

as t → ∞, there exists Φi j (x) for any x ∈ D with probability 1 such

that Φi j (x) = 1 and Φi j (y) = 0,∀y ∈ D,y , x . Then, the Gram

matrix of Isolation Kernel is full rank, because the feature maps

Φ(x) for all points x ∈ D are mutually independent. Accordingly,

Isolation Kernel is a positive definite kernel with probability 1 in

the limit of t → ∞.

Because of the property of H and the fact that all θ ∈ Hi including

the ψ + 1-th partition have non-zero volumes for any ψ ≥ 2, the

probability of Case 1 is not zero. In addition, because R contains

at least two distinct points in X, the probability of Case 2 is not

zero for any ψ ≥ 2. These facts yield 0 < p < 1, where p is the

probability of an event that Hi satisfies Case 1 but not Case 2. Since

ψ , t ≪ |D |, Hi are almost independently sampled over i = 1, . . . , t ,
and the probability of the event occurring over all i = 1, . . . , t is
pt . If t → ∞, then pt → 0. This implies that Isolation Kernel is

injective with probability 1 in the limit of t → ∞.

Both the positive definiteness and the injectivity imply that Isolation

Kernel is a characteristic kernel. □

Some data independent kernels such as Gaussian kernel are

characteristic [10]. Because an empirical estimation uses a finite

dataset, their kernel meanmaps that ensure injectivity (see section 4

in [18]) are as good as that using Isolation Kernel with large t .
To use the kernel meanmap for anomaly detection, a point kernel

deriving the kernel mean map must be characteristic. Otherwise,

anomalies of PS may not be properly separated from normal points

of PT because some anomalies and normal points may be mapped

to an identical point Φ̂(PT ) = Φ̂(PS ). As we will show in the

experiment section, Isolation Kernel using t = 100 is sufficient to

produce better result than Gaussian kernel (which is characteristic)

in kernel mean embedding for anomaly detection.
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4.3 Data dependent property of IDK
Following Definitions 4.1, IDK of two distributions PS and PT
can be redefined as the expected probability over the probability

distribution on all partitioningH ∈ Hψ (D) that a randomly selected

point-pair x ∈ S and y ∈ T falls into the same isolation partition

θ [z] ∈ H , where z ∈ D ⊂ D,ψ = |D|:

K̂I (PS ,PT |D) = EHψ (D) [I(x ,y ∈ θ [z] | θ [z] ∈ H ;x ∈ S,y ∈ T )]

If the supports of both PS and PT are included in E and ∀w ∈E ,

PD (w) < PD′(w) holds, the above expression leads to the following

proposition, since every point-pair from S andT follows Theorem 1.

Proposition 1. Under the conditions on PD , PD′ , D, D ′ and E

of Theorem 1, given two distribution-pairs PS ,PT ∈ P where the sup-
ports of both PS and PT are in E, the IDK K̂I based on hyperspheres
θ (z) ∈ H has the property that K̂I (PS ,PT |D) > K̂I (PS ,PT |D

′).

In other words, the data dependent property of Isolation Kernel

leads directly to the data dependent property of IDK:

Two distributions, as measured by IDK derived in sparse re-
gion, are more similar than the same two distributions, as
measured by IDK derived in dense region.

5 PROPOSED METHOD FOR KERNEL BASED
ANOMALY DETECTION

Let Φ̂(PD ) be a kernel mean mapped point of a distribution PD
of a dataset D. The kernel mean embedding K̂ , as a result of the

mapping Φ̂(PD ), shall produce the following:

• If x ∼ PD , K̂(δ (x),PD ) is large, which can be interpreted as

x is likely to be part of PD .

• If y ≁ PD , K̂(δ (y),PD ) is small, which can be interpreted

as y is not likely to be part of PD .

With this interpretation, y ≁ PD can be naturally used to iden-

tify anomalies in D. The definition of anomaly is thus:

‘Given a similarity measure K̂ of two distributions, an anomaly

is an observation whose Dirac measure δ has a low similarity with

the distribution from which a reference dataset is generated.’

This is an operational definition, based on distributional kernel

K̂ , of the one given by Hawkins (1980):

‘An outlier is an observation which deviates so much from the

other observations as to arouse suspicions that it was generated by

a different mechanism.’

Let PT and PS be the distributions of normal points and point

anomalies, respectively. We assume that ∀x ∈ T ,x ∼ PT ; and S
consists of subsets of anomalies Si from mutually distinct distribu-

tions, i.e., S = ∪mi=1Si , where PSi = δ (xi ) is the distribution of an

anomaly xi represented as a Dirac measure δ , and Si = {xi }.
Note that in the unsupervised learning context, only the dataset

D = S ∪T is given without information about S and T , where the
majority of the points in D are from PT ; but D also contains few

points from PS . Because |S | ≪ |T |, PD ≈ PT . The kernel mean

map of PT is empirically estimated from D, i.e., Φ̂(PT ) ≈ Φ̂(PD ) =
1

|D |

∑
x ∈D Φ(x) is thus robust against influences from PS because

the few points in S create significantly lower weights than the many

points in T . Therefore, Φ̂(PT ) ≈ Φ̂(PD ) is in a region distant from

Figure 2: An illustration of kernel mean mapping Φ̂ used in
K̂I for a dataset D, containing anomalies y1 & y2. Φ̂ maps
from Rd of D & individual points to points in H .

those of Φ̂(PSi ), ∀i . In essence, IDK derived from D is robust against
contamination of anomalies in D.

We compute IDK by using Isolation Kernel constructed with D,
and its kernel mean map projects PD and PSi to two distinct points:

Φ̂(PD ) and Φ̂(PSi ) in H .

Point anomaly detector K̂ : The proposed detector is onewhich

summarizes the entire dataset D into one mapped point Φ̂(PD ). To

detect point anomalies, map each x ∈ D to Φ̂(δ (x)); and compute

its similarity w.r.t. Φ̂(PD ), i.e.,
〈
Φ̂(δ (x)), Φ̂(PD )

〉
. Then sort all com-

puted similarities to rank all points inD. Anomalies are those points

which are least similar to Φ̂(PD ). The anomaly detector due to IDK

is computed using Eq 10, denoted as K̂I ; and the detectors using

Gaussian kernel and its Nyström approximation are computed using

Eq 1 and Eq 2, respectively, denoted as K̂G and K̂NG .

Figure 2 shows an example mapping Φ̂ of a normal point x ,

two anomalies y1 and y2 as well as D from Rd to H . The global

anomaly y2 is mapped to the origin of H ; and y1 which is just

outside the fringe of a normal cluster is mapped to a position where

K̂I (δ (y1),PD ) is closer to the origin than that of normal points.

To be an effective anomaly detector using kernel mean embed-

ding, we show in the next section that the kernel employed being

characteristic is not sufficient without being data dependent; and

the power of K̂I enables it to be the only kernel-based anom-
aly detector that does not need explicit learning.

6 EXPERIMENTS
The detection accuracy of an anomaly detector is measured in terms

of AUC (Area under ROC curve). As all the anomaly detectors

are unsupervised learners, all models are trained with unlabelled

training sets. Only after the models have made predictions, ground

truth labels are used to compute the AUC for each dataset. We

report the runtime of each detector in terms of CPU seconds.

Parameter settings used in the experiments: K̂I uses t = 100; and

ψ is searched overψ ∈ {2m |m = 1, 2...12}. (These settings are the

same for iForest [8] and iNNE [2], to be described in Section 7.) For

all methods using Gaussian kernel, the bandwidth is searched over

{2m |m = −5, . . . 5}. The sample size of the Nyström method is set

as

√
n which is also equal to the number of features. All datasets

are normalized to [0, 1] in the preprocessing.

We compare kernel based anomaly detectors K̂I , K̂G and K̂NG
(using the Nyström method [12] to produce an approximate fea-

ture map as preprocessing) with an existing kernel based anomaly

detector: OCSVM [15] which employs Gaussian kernel.
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Table 2: Results of kernel based anomaly detectors (AUC).

Dataset #Inst #Ano #Attr K̂I K̂G K̂NG OCSVM

speech 3686 61 400 0.76 0.46 0.47 0.65

EEG_eye 8422 165 14 0.88 0.55 0.47 0.54

PenDigits 9868 20 17 0.98 0.98 0.95 0.98

MNIST_230 12117 10 784 0.98 0.97 0.97 0.96

MNIST_479 12139 50 784 0.86 0.69 0.60 0.59

mammograg 11183 260 6 0.88 0.85 0.86 0.84

electron 37199 700 50 0.80 0.65 0.57 0.64

shuttle 49097 3511 9 0.98 0.98 0.99 0.98

ALOI 50000 1508 27 0.82 0.60 0.54 0.53

muon 94066 500 50 0.82 0.63 0.55 0.75

smtp 95156 30 3 0.95 0.81 0.77 0.91

IoT_botnet 213814 1000 115 0.99 0.83 0.68 0.93

ForestCover 286048 2747 10 0.97 0.85 0.86 0.96

http 567497 2211 3 0.99 0.99 0.98 0.97

Average rank 1.25 2.64 3.18 2.92

Table 3: Runtime comparison (in CPU seconds) on http.

K̂I K̂G K̂NG OCSVM iNNE iForest

train 31 0 106 13738 15 6

test 2 9689 1 1964 1 18

6.1 Evaluation of kernel based detectors
Table 2 shows that K̂I is the best anomaly detector among the four

detectors. The huge difference in AUC between K̂I and K̂G (e.g.,

speech, MNIST_479 & ALOI) shows the superiority of Isolation

Kernel over data independent Gaussian kernel. As expected, K̂NG
performedworse than K̂G in general because it uses an approximate

feature map.

A Friedman-Nemenyi test [5] in Figure 3 shows that K̂I is sig-

nificantly better than the other algorithms.

Table 3 shows that K̂I has short testing and training times. In

contrast, K̂G has the longest testing time though it has the shortest

(zero) training time; and OCSVM has the longest training time. This

is because its operations are based on points without feature map

(K̂G uses Eq 1). While K̂NG (uses Eq 2) has significantly reduced

the testing time of K̂G , it still has longer training time than K̂I
because of the Nyström process.

Time complexities: To compute the similarity of two sets, each

having n points, K̂G takes O(n2). For K̂I , the preprocessing Φ̂(PS )
of a set S of n points takes O(ntψ ) and needs to be completed

once only. K̂I takes O(tψ ) only to compute the similarity between

two sets. Thus, the overall time complexity is O(ntψ ). For large
datasets, tψ ≪ n, this accounts for the huge difference in testing

times between the two methods we observed in Table 3. The time

complexity of OCSVM in LibSVM is O(n3).

Figure 3: Friedman-Nemenyi test for anomaly detectors at
significance level 0.05. If two algorithms are connected by
a CD (critical difference) line, then there is no significant
difference between them.

Figure 4: An one-dimensional dataset having three normal
clusters of Gaussian distributions and one anomaly cluster
(the small cluster on the right). They have a total of 1500+20
points. The bottom line shows the density distribution as es-
timated by a kernel density estimator (KDE) using Gaussian
kernel (its scale is not shown on the y-axis.) The distribu-
tions of scores/similarities of OCSVM and K̂I (scales in y-
axis) are shown. The scores of OCSVM have been inversed
and rescaled to [0, 1] to be comparable to similarity.

6.2 OCSVM fails to detect local anomalies
Here we examine the abilities of K̂I and OCSVM to detect local

anomalies and clustered anomalies. The former is the type of anom-

alies located in close proximity to normal clusters; and the latter

is the type of anomalies which formed a small cluster located far

from all normal clusters.

Figure 4 shows the distributions of similarities of K̂I and OCSVM

on an one-dimensional dataset having three normal clusters of

Gaussian distributions (of different variances) and a small group

of clustered anomalies on the right. Note that OCSVM is unable to

detect all anomalies located in close proximity to all three clusters,

as all of these points have the same (or almost the same) similarity

to points at the centers of these clusters. This outcome is similar

to that using the density distribution (estimated by KDE) to detect

anomalies because the densities of these points are not significantly

lower than those of the peaks of low density clusters.

In addition, the clustered anomalies have higher similarities, as

measured by OCSVM, than many anomalies at either fringes of the

normal clusters. This means that the clustered anomalies are not

included in the top-ranked anomalies.

If local anomalies are defined as points having similarities be-

tween 0.25 and 0.75, then the distribution of similarity of K̂I shows

that it detects all local anomalies surrounding all three normal

clusters; and regards the clustered anomalies as global anomalies

(having similarity < 0.25). In contrast, OCSVM fails to detect many
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Figure 5: Boxplot of 10 runs of K̂I on ForestCover and smtp.
This result shows the increased stability of K̂I predictions
as t increases from 100 to 1000.

of the local anomalies detected by K̂I ; and the clustered anomalies

are regarded as local anomalies by OCSVM.

6.3 Stability analysis
This section provides an analysis to examine the stability of the

scores of K̂I . Because K̂I relies on random partitionings, it is impor-

tant to determine how stable K̂I is in different trials using different

random seeds.

Figure 5 shows a boxplot of the scores produced by K̂I over 10

trials. It shows that K̂I becomes more stable as t increases.

6.4 Robust against contamination of anomalies
in the training set

This section examines how robust an anomaly detector is against

contamination anomalies in the training set. We use a ‘cut-down’

version of K̂I which does not employ IDK, but Isolation Kernel only,

i.e., ∥Φ(x)∥. ∥Φ(x)∥ is the base line in examining the robustness of

K̂I because Φ(x) is the basis in computing K̂I (see Equation 10).

Figures 6 and 7 show two example comparisons between ∥Φ(x)∥

and K̂I on the ForestCover and http datasets, where exactly the

same hyperspheres are used in both detectors. The results show

that ∥Φ(x)∥ is very unstable in a dataset with high contamination

of anomalies (high γ ). Despite using exactly the same ∥Φ(x)∥, K̂I
is very stable for all γ ’s. This is a result of the distributional charac-
terisation of the entire dataset, described in Section 5.

7 RELATION TO ISOLATION-BASED
ANOMALY DETECTORS

Both K̂I and the existing isolation-based detector iNNE [2] employ

the same partitioning mechanism. But the former is a distributional

kernel and the latter is not.

iNNE employs a score which is a ratio of radii of two hyper-

spheres, designed to detect local anomalies [2]. The norm ∥Φ(x)∥
of Isolation Kernel, which is similar to the score of iNNE, simply

counts the number of times x falls outside of a set of all hyper-

spheres, out of t sets of hyperspheres. This explains why both iNNE

and ∥Φ(x)∥ have similar AUCs for all the datasets we used for point

anomaly detection.

Figure 6: Boxplot of 10 runs of each of K̂I and ∥Φ(x)∥ on
ForestCover. The original anomaly ratio r is the ratio of
the number of anomalies and the number of normal points
in the given dataset. γ × r is used in the experiment to in-
crease/decrease the anomalies in the given dataset. γ = 1

when the given dataset is used without modification; γ = 0

when no anomalies are used in the training process. γ > 1

has an increasingly higher chance of including anomalies
in the training process.

Figure 7: Boxplot of 10 runs of each of K̂I and ∥Φ(x)∥ on http.

Table 4: Results of isolation-based anomaly detectors (AUC).

Dataset K̂I ∥Φ(x)∥ iNNE iForest

speech 0.76 0.75 0.75 0.46

EEG_eye 0.88 0.87 0.87 0.58

PenDigits 0.98 0.96 0.96 0.93

MNIST_230 0.98 0.97 0.97 0.88

MNIST_479 0.86 0.60 0.86 0.45

mammograg 0.88 0.86 0.84 0.87

electron 0.80 0.78 0.79 0.80

shuttle 0.98 0.98 0.98 0.99

ALOI 0.82 0.82 0.82 0.55

muon 0.82 0.81 0.82 0.74

smtp 0.95 0.92 0.94 0.92

IoT_botnet 0.99 0.99 0.99 0.94

ForestCover 0.97 0.96 0.96 0.93

http 0.99 0.99 0.99 0.99

Average rank 1.50 2.75 2.43 3.32

In comparison with ∥Φ(x)∥ and iNNE, K̂I has an additional

distributional characterisation of the entire dataset. Table 4 shows

that K̂I ’s score based on this characterization leads to equal or
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better accuracy than the scores used by both ∥Φ(x)∥ and iNNE.

This is because the characterisation provides an effective reference

for point anomaly detection, robust to contamination of anomalies

in a dataset. This robustness is important when using points in a

dataset which contains anomalies to build a model (that consists of

hyperspheres used in K̂I , ∥Φ(x)∥ and iNNE.)

Since K̂I , iNNE [2] and iForest [8] have same time complexity

O(ntψ ), they have approximately the same runtime on the largest

dataset http, as shown in Table 3.

In a nutshell, existing isolation-based anomaly detectors, i.e.,

iNNE and iForest, employ a score similar to the norm ∥Φ(x)∥. This is
an interesting revelation because isolation-based anomaly detectors

were never considered to be related to a kernel-based method before

the current work. The power of isolation-based anomaly detectors

can now be directly attributed to the norm of the feature map

∥Φ(x)∥ of Isolation Kernel.

From another perspective, K̂I can be regarded as a member of

the family of Isolation-based anomaly detectors [2, 8]; and iForest

[8] has been regarded as one of the state-of-the-art point anomaly

detectors [1, 6]. iNNE [2] is recently proposed to be an improvement

of iForest. K̂I is the only isolation-based anomaly detector
that is also a kernel based anomaly detector.

The improvement of iNNE over iForest is mainly due to the

use of a better isolating mechanism—overcoming four weaknesses

of iForest [2]. The improvement of K̂I over iNNE is mainly due

to the distributional characterisation—it also contributes to K̂I
being the most robust isolation-based anomaly detector against

contamination of anomalies in the training set.

In addition, the proposed method is the only detector that makes

use of distributional kernel for point anomaly detection. While

existing detector OCSMM [11] employs a distributional kernel, it is

a group anomaly detector, not a point anomaly detector.

8 CONCLUSIONS
We show that Isolation Distributional Kernel addresses two key

issues of kernel mean embedding, where the kernel employed has:

(i) a feature map with intractable dimensionality which leads to

high computational cost; and (ii) data independency which leads to

poor detection accuracy in anomaly detection.

Our theoretical analyses reveal that a point kernel must be both

data dependent and characteristic in order to produce an effective

anomaly detector. Gaussian kernel, being characteristic but data

independent, does not have the sufficient conditions.

We introduce a new Isolation Kernel and establish the geometri-

cal interpretation of its feature map. This interpretation provides

the insight that point anomalies and normal points are mapped

into distinct regions in the feature space. This is the source of the

power of K̂I . We also reveal that the distributional characterisation

makes K̂I robust to contamination of anomalies in a dataset.

Our evaluation shows that K̂I , without explicit learning, pro-

duces better detection accuracy than existing key kernel-based

methods in detecting point anomalies, while achieving short test-

ing and training times. In contrast, K̂G and OCSVM, which employ

Gaussian kernel, have lower detection accuracy in most datasets,

and run up to three orders of magnitude slower in large datasets.
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